
Checkpoint
and Restore
In Userspace

Supported by

What is OpenVZ?
OpenVZ is a project that combines the following
container virtualization technologies for Linux:

•	 Virtuozzo kernel, a Linux kernel with patches that im-
plements OpenVZ kernel functionality.

•	 Management utilities, such as vzctl, for managing con-
tainer life cycle.

•	 Checkpoint/Restore In Userspace, or CRIU (pronounced
kree-oo, IPA: /krɪʊ/, Russian: криу), is a software tool for
Linux that enables you to freeze a running application
(or a part of it) and checkpoint it to a hard drive as a
collection of files. You can then use the files to restore
and run the application from the point it was frozen at.
The distinctive feature of the CRIU project is that it is
mainly implemented in userspace. Docker and LXC use
CRIU for migrating containers between servers.

•	 Ploop is a disk loopback block device, not unlike loop
but with many features like dynamic resize, snapshots,
backups etc. The main idea is to put container filesys-
tem in a file.

•	 P.Haul is the project on top of CRIU that implements
the live migration usage scenario.

•	 LibCT is a container management library that provides
a convenient API for front-end programs for managing
the entire container life cycle.

Use cases
Server Consolidation
•	 Uniform management.

•	 Easy to upgrade from Vir-
tuozzo OpenVZ edition to
the commercial Virtuozzo.

•	 Scalable.

•	 Fast migration.

Development and Testing
•	 Different distros can co-

exist.

•	 A container can be cre-
ated in a minute.

•	 A server can have hun-
dreds of containers.

•	 Cloning, snapshots, roll-
backs are available.

•	 A container is a sandbox:
one can work and play
without fear.

Security
•	 Give each app its own iso-

lated container.

•	 Security hole in an app
will not affect others.

•	 Dynamic resource man-
agement controls runa-
way processes.

Hosting
•	 Users are isolated.

•	 A container is like a real
server, just cheaper.

•	 Much easier to administer.

Education
•	 Every student can have

root access.

•	 Different distributions are
supported.

•	 Low hardware require-
ments.

Container-based
virtualization for Linux.
Fast, lightweight, secure.
Choose three.

www.openvz.org	 www.criu.org

Containers can run various Linux distributions:

OpenVZ Decennial
a short history of the OpenVZ project

1999 – SWsoft prepared first concept of product
with container virtualization

2000 – Limited public beta testing of new product

2002 – SWsoft initially released a product for
Linux named Virtuozzo

2005 – SWsoft created the OpenVZ Project to
release the core of Virtuozzo under GNU GPL

2006 – New ports: SPARC and PPC; OpenVZ
is available in Debian Linux; OpenVZ adds live
migration capability

2008 – Published templates for Ubuntu 7.10,
created OpenVZ port to ARM

2009 – Parallels company is in Top 10 Linux
kernel contributors with their patches for Linux
containers

2011 – Prepared first implementation of our new
project CRIU

2012 – First release of CRIU project, vzctl for
upstream Linux kernel is available

2013 – OpenVZ maintenance partnership

2014 – Parallels decided to merge OpenVZ
and Virtuozzo into single common open source
codebase

2015 – Source code of RHEL7-based kernel
was published and kernel development process
become open

Frequently Asked Questions
What is a container (Virtual Environment, Virtual Private Server)?

A container (CT) is an isolated entity which works exactly like
a standalone server. Containers can be rebooted independently
and have root access, users/groups, IP addresses, memory, pro-
cesses, files, applications, system libraries, and configuration
files.

What is a virtual machine?

A virtual machine (VM) is an emulation of a particular computer
system. Virtual machines operate based on the computer archi-
tecture and functions of a real or hypothetical computer, and
their implementations may involve specialized hardware, soft-
ware, or a combination of both.

What are the highlights of OpenVZ technology?

OpenVZ is a highly scalable virtualization technology for Linux
with near-zero overhead, strong isolation and rapid customer
provisioning that is ready for production use out of the box. De-
ployment of OpenVZ improves efficiency, flexibility, and quality
of service in the enterprise environment.

How is OpenVZ different from other technologies?

Virtual machines boot separate kernels on emulated hardware
instances. OpenVZ runs all containers under a single Linux
kernel. OpenVZ offers a much higher density, enabling to host
thousands of containers on a single physical server, but can only
run Linux in those containers. Virtual machine solutions usually
top out at a few dozen instances, but can run different operat-
ing systems in each.

What is the relationship between OpenVZ and LXC?

OpenVZ develops a new container technology that then goes
upstream into the vanilla Linux kernel. OpenVZ has an about 5
year head start on LXC, but is actively feeding the technology
upstream into vanilla containers. Several internal details cur-
rently differ (OpenVZ adds new system calls, vanilla uses the
cgroups filesystem, new clone flags, and other mechanisms).

What applications can run inside an OpenVZ container?

Applications and services do not have to be aware of OpenVZ,
and most are installed without any modifications: Java, Oracle,
DB/2, Weblogic, Websphere, and many other big applications
run just fine inside OpenVZ containers. However, direct access
to hardware is not available by default; if required it must be
provided by the system administrator.

How scalable is OpenVZ?

OpenVZ scales as well as Linux does: we’ve tested 64 CPUs
with 128 GB of RAM. It scales down to embedded devices
like smart phones or plug computers. A single container can
dynamically scale to take from a tiny fraction to all available
resources and that can be adjusted without restart.

How does OpenVZ improve efficiency?

OpenVZ improves utilization of existing hardware by increas-
ing average load while still providing the ability to handle peak
loads. When buying new servers, using a few powerful boxes
instead of many small ones allows better reliability, better peak
performance and typically longer lifespan.

How does OpenVZ improve flexibility of services?

Each container is hardware-independent and can be moved to
another OpenVZ-based system over network in seconds. This
eases hardware maintenance (move out all containers and do
whatever you need with the box) and improves availability
(keep a synchronized copy of your container elsewhere and
start it up if primary service fails). When your old box can no
longer cope with peak load, you can live migrate your contain-
ers to a new one.

What is the performance overhead?

Near zero. There is no emulation layer, only security isolation
and resource accounting. All checking is done in the kernel
without context switching.

Where do I get (or put) more answers?

OpenVZ wiki is your friend. See http://wiki.openvz.org/
Full story is here: http://openvz.org/History

